SOLID PROPELLANT COMBUSTION IN THE
PRESENCE OF PHOTOIRRADIATION
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Previous studies of the nonsteady processes associated with the irradiation of propellants
with light have chiefly been devoted to the question of ignition [1-3].* It is also important
to consider the effect of such an easily controlled influence as light on the propellant com-
bustion process. We have attempted to estimate the dependence of the propellant burning
rate on the intensity of the luminous radiation. Cases of steady-state combustion and com-
bustion in the presence of a light flux varying harmonically with time are considered. It is
assumed that the incident light flux is absorbed in the solid phase in accordance with the
Bouguer —Lambert exponential law with constant transparency index, Steady-state combus-
tion is considered within the framework of the Zel'dovich theory [4]. It is shown that in the
steady state irradiation is equivalent to a certain increase in the initial temperature of the
propellant. In the case of combustion with irradiation this makes it possible to use the
data on steady-state combustion without irradiation. Nonsteady combustion in the presence
of a periodically varying light flux is described with the aid of the Novozhilov model [5]. A
correction to the mean burning rate (Au°), proportional to the square of the light flux ampli-
tude, is obtained. In the case of an exponential dependence of the burning rate on initial
temperature the correction Au°® is negative. The effect of irradiation on the stability of the
steady-state propellant combustion mode is discussed.

1. Steady-State Irradiation. Combustion Law

The equation describing the change of temperature in the solid phase in the presence of conductive
and radiative heat transfer takes the form

d [y OT 4 - x
pc(%—l—u%—g):_a?(h—a—z——{-.f(t)e“) (— o0 <z =0) 1.1)

where J(t) is the fraction of the incident luminous flux (cal/sec - cm?) absorbed in the solid phase; ¢ is the
transparency index of the solid phase in the Bouguer— Lambert law (1/cm); p,c, and A are the density,
specific heat, and thermal conductivity of the solid phase, respectively; u is the propellant burning rate,

In this case the following boundary conditions must be satisfied:
T(—o0)=Ty, T(0) =T 1.2)
where T, is the initial temperature of the propellant, and T, is the temperature of the propellant surface.

In the steady-state case Eq, (1.1) is easily integrated and its solution takes the form [6]
o JO o A
T —To= (I —To)exp -2+ yomrp—ay (e — exp 2 z), w=— .3
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If the transparency of the propellant is low (¢ w/u® > 1), then in absolute value solution (1.3) tends to
the Michelson distribution

T — Ty= (T —Ty)exp (-’:—:— x) 1.4)

At any value of ¢ the temperature curve (1.3) passes above the Michelson distribution (1.4).

The steady-state surface temperature gradient f° is related with the initial temperature T, by the ex-
pression
wf® = u® (I° — Ty) — J°pe a.5)
which in the absence of irradiation (J° = 0) goes over into the usual relation corresponding to distribution
1.4)

#fe’ = uy” (T10° — To) 1.6)
We note that for steady-state irradiation the gradient f° does not depend on o.

Since for steady-state combustion the gradient f° cannot be negative, from (1.5) there follows the up-
per bound on the value of the light flux J°, at which the steady-state mode is possible,

JG
upe (T1° — Tha) <t 1.7

In particular, for the Zel'dovich model, in which T, is constant, and a dependence of u,° on T, of the
type uy° ~ eB To there is a maximum burning rate uy;° that is obtained at an initial temperature T, close to
the surface temperature T;. In this case ratio (1.7) tends to unity, and u®> —uy;° for finite light fluxes J°.
Moreover, the ratio (1.7) should not be too close to unity; otherwise the smaliness of the gradient f° leads
to a powerful expansion of the solid-phase reaction zone, so that the Zel'dovich combustion model is inap-
plicable. In this case the heated surface layer of propellant may periodically explode in accordance with a
thermal mechanism.

Now, in the absence of irradiation let the dependence of the burning rate u,° and surface temperature
Ty° on the initial temperature T; and pressure p be known:
uy = F(T,, p), T1s" = G (T, p) (1.8)
Using relation (1.6), we can express u,° and Ty;° in terms of p and f;°. In accordance with Novozhilov's
theory [5] the steady-state laws u(p, f), Ty(p, f) obtained are also valid in the nonsteady case,

We now assume that the relations u(p, f) and Ty(p, f) obtained for J = 0 are also valid in the presence
of a light flux. Then, substituting relation (1.6) in the dependence u;° = F(p, T;) and replacing f,° by the ex-
pression for f° from (1.5), we obtain the dependence of the steady-state burning rate u® on the initial tem-
perature T, in the presence of irradiation

o J°
w=F(p, To+ ) 1.9)

Thus, the increase in burning rate from u,° to u® in the presence of irradiation of the propellant sur-
face by a steady light flux is equivalent to the change in burning rate associated with an increase in initial
temperature by the amount

ATy = J° [ upe (1.10)

Starting from this, the burning rate u° in the presence of irradiation may conveniently be found as fol-
lows (Fig.1): we construct graphs of the functions F~1(u) and (T, + J°/up c¢) in the coordinate system (@, T);

the point of intersection of the graphs determines the unknown burning rate u® and the effective initial tem-
perature Ty*

To* = Ty +J° | upe 1.11)
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The equivalence of a light flux and initial temperature in the case of suf-
ficiently transparent propellants was previously noted in [6].

Equation (1.10) makes it possible to determine the rate fluxes necessary
to attain a given level of the burning rate u® for a known dependence of 1,° on
initial temperature

J° = ATpcu®

Thus, in accordance with the experimental data of [7] for a ballistite N
powder) at a pressure p =1 atm, in order to raise the burning rate from 0.6
(at T, = 0°C) to 1.02 mm/sec a light flux of 2.8 cal/cm? - sec is required, which corresponds to raising the
initial temperature T, to Ty* = 50°C. At a pressure p = 20 atm in order to raise the burning rate from
0.26 cm/sec (T, = 0°C) to 0.35 ecm/sec (T * = 50°C) a light flux J° = 7.3 cal/cm? - sec is required.

At low values of the illuminance [J°/u°pc(T;° — Ty) «<1] we have the following approximate expression
for u°, calculated correct to a factor proportional to the square of the light flux J°,

u = ul 4 + k8 + Y, (I — 2k% 8 (1.12)
where u,° is the steady-state burning rate in the absence of irradiation

o J° _ 8 lnug® (T —To  Fw®
8= wmam =Ty =T =TT, b=-" s (1.13)

Here, as before, a degree sign denotes the steady-state value, while a zero subscript denotes that the
corresponding quantity is taken at J° = 0.

2. Stability of Steady-State Combustion in the Presence of Irradiation

The equivalence of steady-state irradiation of the propellant surface to a certain increase in initial
temperature makes it possible to employ, incombustion problems with irradiation, the data on steady-state
combustion without irradiation. This is achieved by simple conversion of the true initial temperature T, to
the effective temperature Ty*

However, in nonsteady combustion modes in the presence of irradiation relation (1.5) ceases to hold
and the temperature gradient at the propellant surface depends on the transparency index of the solid phase
o. I this connection, in the general case such characteristics of the propellant as the stability limit of the
steady-state combustion mode and the natural frequency depend on ¢ and J°.

Nonetheless, if the transparency of the propellant is low and the light is absorbed in a narrow surface
layer of the solid phase, whose width is negligible as compared with the width of the solid-phase induction
zone (on/u® > 1), the heat distribution in the solid phase in the presence of irradiation has the same form
as in the absence of irradiation, In this limiting case the equations for the stability limit of steady-state
combustion modes and the natural frequency of the propellant, obtained in the absence of irradiation [4,5],
retain their previous form. Thus, for example, for the case of constant surface temperature stable steady-
state modes correspond to the condition [4]

k* <1 2.1)
where k* is the Zel'dovich criterion calculated for T, = Ty*

9 1nu°
k* = (To*) = (T1 — To*) 575 (2.2)

For a uy°(T,) dependence of the type u,° ~ expfTyk = g (T1 — T,)) the presence of irradiation leads to
a decrease in the value of the criterion k, i.e., greater combustion stability.

In the presence of a variable surface temperature stable steady-state modes satisfy the condition [5]

S > (B — 1R + 1) (2.3)

694



where r* is the Novozhilov parameter for T, = Ty*

r¥ = gT°6T* @.4)

In this case the presence of irradiation, like an increase in initial temperature, may lead either to an
increase or to 2 decrease in comhbustion stability, For example, for N powder, in accordance with the data
of [7], irradiation brings the steady-state combustion mode closer to the stability limit (2.3). We note that
conditions (2.1) and (2.3) are also confirmed by an exact analysis of the problem of the natural frequency of
a propellant on the assumption that its transparency is low.

3. Periodic Irradiation. Quasi-Linearization of the Problem

We will now consider a propellant burning in the presence of periodically varying irradiation of the
surface on the assumption that the pressure is constant. ILet the mean value of the light flux be equal to J°,
so that

J=J°+AJCOSG)t (3 1)

and let the burning rate and surface temperature in the steady-state mode at J = J° be equal to v° and Ty,
respectively. We introduce the dimensionless variables

-3 o\
—-—";—z, 'c=(—l;l—t

3.2)
__(86) _u _ J
?= BE Je—0 =g M= u’pe (T1° — To*)

In these variables the problem is formulafed as follows: for a given law of variation of the light flux

n{T)=a +ecosytr (3.3)

and known functions

v=v(e), 0=9@) (6= 2=Tr) 3.4)

to find v = v(7), if the gradient ¢ (3.2) satisfies the equation

90 00 a8 139
&t =g la e @9

with boundary conditions

Ol = —a, Ofsg=0

(3.6)
Here we have introduced the notation
_— A _ o o
upe (T —To%) * T Wper =T YT W T % 3.7

System (3.3)-(3.6) makes it possible to find the dependence of the burning rate and surface tempera-
ture on time, With the object of finding only the first correction of the order of €2 to the mean burning rate
we seek the solution of the problem in the form of successive approximations

’

v(ty =1 + ey (1) + e¥, (7) + ...
V(1) =1-+ed (1) + () +...
e (Ty E) ZGD (g) + eel (Ta E) + 8262 (Ty E) + Lo

00 gy G0 2 30 @-8)
PO =l =11 2% [z:ﬁgﬁa:ﬁ“'

Substituting expansions (3.8) in Eq. (3.5), boundary conditions (3.6), and relations (3.4}, we obtain a
sequence of systems of equations for finding the successive approximations. For the first approximation
the system of equation takes the form
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o , 28 0% Ll
Bt +'a—£ - 'aE_,Tl +n ’agi =wvcos (71) et

U =019;, Pp= %‘w 3.9)
0,(7, 0) =1 = b9y, 6(1, —00)=0. @
The second approximation satisfies the system
Uy = 0,9 + Y2@:9% @ = 00, (t, 0) /0 (3.10)
0,(7, 0) = &, = b,y + Ya0:9:%  0,(T, — 00) =0 ‘
In systems (3.9) and (3.10) the coefficients a4, a,, by, and b, are given by relations (3.4)
, = e (3.11)
1709 fe=a? Z_W«ml

4, Correction to Mean Burning Rate

Omitting for the time being finding an explicit expression for 6, we seek the constant component v,°,
which determines the correction to the mean burning rate. From system (3.10) it follows that v,> depends
on the steady-state component of the second approximation for the temperature 6,°(¢). Integrating the first
equation in system (3.10) with respect to ¢ from —= to 0, we obtain the relation

o a0 9920 o o
8 =07 (0) = 22— 0,%8(0) — (046, kg (4.1)

Together with the expressions for v,° and ¢,° from (3.10) relation (4.1) forms a closed system of alge-
braic equations. Solving this system, we obtain the expression for v,°

v = 4 [ a1?b1 + Y2 (a3 ~— biaz + aiba) ] 4.2)

a1 --by

where A is determined by the steady-state component of the square of the first approximation for the tem-
perature gradient ¢,

-1 801 (, 0) \T

A= i@rr =[] 4.3)

In its turn, the gradient ¢, is determined by the solution of system (3.9), which depends on the zeroth
approximation of the temperature derivative df,/d . From the steady-state distribution (1.3) we find

%e'ﬁo—=<1— 1fv)e5+

av
1—w

A (4.4)

Substituting (4.4) in system (3.9) and assuming that the natural oscillations of the system are damped,
we find that 6, can be represented in the form

0, = Re [eiv7 (Ajett + Ape® - Age'?)] (4.5)

where
B=py+ i = (Yot ¥/ RY+ PR
R= (VT 160 — 1) 4.6)
The coefficients Ay, A,, and A; satisfy the system of equations
pgA; + (g +iv) 4, +v4; =10 @.7)

phA, + hA;, + (v — v —=vh +iy) Ay =~
(1 —pb) 4, +(1 —h)4; + (1 —‘val)vAs =0

where

av ) av
?

g=a1<1——1_v h=a11-—v (4.8)
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From (4.5) and (4.7) we find the temperature gradient at the surface ¢,

TV — ) - et
ti=v ) ST s e 4 ) (4.9)

(v — p1) AL — Yoo

g = (v — 1) Az 4 oy (4.10)

where, correct to the factor ¥, Ay, and A, are respectively equal to the real and imaginary parts of the de-
terminant of system (4.7)

[ -

2
Ay =1 (edy —~ 1)+ paay + hd [Tieby + € (1 — )]

T ) @.11)
Ay = Toby 4 (1 —py — o) a3 + - —; - (1 (1 = pyby) — pag]
From (4.9), (4.2), and (4.8) we obtain the expression for the mean burning rate increment Au®
Awe 1 AT \2 (v— )2+ B2 a?b 4+ Y2 (a2 — bae + a1by)
5= T?T(u°pc (T1°—To*)} v AE LAz  py— 4.12)

The expression for the increment Au® contains derivatives of the burning rate u and surface tempera-
ture T, with respect to the temperature gradient at propellant surface ¢ . However, in practice, it is usual
to employ the steady-state dependences of the burning rate u° and temperature T;° on the initial tempera-
ture T, obtained in the absence of irradiation (1.8). Accordingly, we shall express the derivatives ay, . . .,
b, in terms of derivatives of the functions F and G. As noted above, the functions u(f ) and T, (f) are given
implicitly by the system

w=F(r,-4), 1,=6(r,~ ) 4.13)

u u

Using system (4.13) and the expression for the gradient f° in the presence of steady-state irradiation
(1.5), we obtain

o = (dlnu) _ ke
LT \dInfli=p ~ *Jr¥—1
b= ot (1) ok (4.14)
VU@ =ToM N df lp=pe T BT 1
_p ey t B e ot
h = T(Fﬁ)f=f° T =1y [k* - k*(-i—r‘-:i) + R - ’*)] (4.18)
U &7yt P P )
by = T —To*) ( daf ),=,a T =iy [r* TR A “‘k*’*)]
where
(T —Te% dF _dG
k=g T =g (4.16)
’ ] dk* 7 o dr®
B = (TS - To*)';[f;i , ™ =(T,"—Ty* d]roa 4.17)

The relation between the derivatives with respect to the gradient and the derivatives with respect to
initial temperature in the presence of irradiation has the same form as in the absence of irradiation [5].
The only difference consists in the fact that the parameters k and r must be calculated not at the true initial

temperature T, but at the effective temperature Ty*. Substituting (4¢.16), (4.17) in the expression for Au°, we
obtain

Au® _ i AT 2 (v— R+ w2 K — k(R —1)
T & (u"pc (I° —Td% ) : AZ 4 A7 I —1p (4.18)

The sign of the increment coincides with the sign of the last fraction in expression (4.18). If the de-

pendence of the burning rate on initial temperature is represented in the form u° ~ eBTO, where g is con-
stant, then

B =(T° —To*)B, k¥ =Fk*(r* —1)
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and the correction Au® is negative. This result is similar to that obtained from an analysis of combustion
in the presence of a variable heat flux [8]. The physical explanation is based on the fact that the effect of
additional heating of the propellant is weakened as the mass flux increases, whereas the cooling effect is in-
tensified as the mass flux decreases, The dependence of Au°® on the frequency 7 and the transparency index
v is expressed by the factor '

(v —pa)? + pa?
Ay v Sy v (4.19)

In accordance with (4,68) and (4.11) at high frequencies ¥ > 1 and a transparency index v close to zero
or comparable with unity [so that ¥ "1(v — ¥2) « 1], for (4.19) we have the asymptotic expression [correct to

o/y)]

T—(—1) ¥V2y
[T Vipr + 1 — 1) +a VIR -+ [v Virbo+ G —av— Yy af?

4.20)
It follows from (4.20) that in the limit as ¥ — « the correction Au° tends to zero. In absolute magni-
tude Au° is the greater, the greater the transparency index v,

In the other limiting case as ¢ — 0 and simultaneously ¥ « (v — v?%) expression (4.19) tends to
v—1aa, +(v—1)1~b —gI"+ 0 4.21)

The value of the correction Au®/u° can reach values comparable with unity only at sufficiently large
amplitudes of the light flux oscillations (¢ close to wnity). At moderate amplitudes AJ, the correction Au® /u°
is not very great, Thus, for example, for N powder, whose transparency index ¢ is equal to 15 cm™! over a
broad range of light waves,” we find that at p = 1 atm, T, =-100°C, J° = 8,5 cal/cm? - sec, AJ = § cal/cm?,
w = 5-10 Hz the correction | Au*/w° | is about 10%,

Near the Stability limit of the steady-state combustion mode and at frequencies y close to the natural
frequency of the propellant the correction rapidly increases. In this case fairly large changes in the mean
burning rate, possibly leading to extinction, are to be expected in the presence of periodic irradiation.

In conclusion the authors thank O, I. Leipunskii and V. B. Librovich for their valuable advice.
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